منابع مشابه
Cauchy Integral Theorem
where we use the notation dxI for (1.4) dxI = dxi1 ∧ dxi2 ∧ ... ∧ dxik for I = {i1, i2, ..., ik} with i1 < i2 < ... < ik. So ΩX is a free module over C ∞(X) generated by dxI . Obviously, Ω k X = 0 for k > n and ⊕ΩX is a graded ring (noncommutative without multiplicative identity) with multiplication defined by the wedge product (1.5) ∧ : (ω1, ω2)→ ω1 ∧ ω2. Note that (1.6) ω1 ∧ ω2 = (−1)12ω2 ∧ ω...
متن کاملCauchy Mean Theorem
The purpose of this paper was to prove formally, using the Mizar language, Arithmetic Mean/Geometric Mean theorem known maybe better under the name of AM-GM inequality or Cauchy mean theorem. It states that the arithmetic mean of a list of a non-negative real numbers is greater than or equal to the geometric mean of the same list. The formalization was tempting for at least two reasons: one of ...
متن کاملOn the T ( 1 ) - Theorem for the Cauchy IntegralJoan
The main goal of this paper is to present an alternative, real variable proof of the T(1)-Theorem for the Cauchy Integral. We then prove that the estimate from below of analytic capacity in terms of total Menger curvature is a direct consequence of the T(1)-Theorem. An example shows that the L 1-BMO estimate for the Cauchy Integral does not follow from L 2 boundedness when the underlying measur...
متن کاملA Generalisation of the Cauchy–Kovalevskaïa Theorem
We prove that time evolution of a linear analytic initial value problem leads to sectorial holomorphic solutions in time.
متن کاملThe Cauchy-davenport Theorem for Semigroups
We generalize the Davenport transform to prove that, for A = (A,+) a cancellative unital semigroup and X,Y subsets of A such that the smallest subsemigroup generated by Y is commutative, one has that |X + Y | ≥ Ω(X,Y ) := min ( |X|+ |Y | − 1, sup y0∈Y× min y∈Y \{y0} ord(y − y0) ) if 2 ≤ |X|, |Y | < ∞. While extending the Cauchy-Davenport theorem to the broader and abstract setting of (possibly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2010
ISSN: 1812-5654
DOI: 10.3923/jas.2010.1349.1351